Berikut ini merupakan artikel yang akan membahas mengenai perpindahan kalor, 3 cara perpindahan kalor, perpindahan kalor secara konduksi, perpindahan kalor secara konveksi, perpindahan kalor secara radiasi, konduksi, konveksi, radiasi, perpindahan panas secara konveksi, perpindahan panas konveksi, perpindahan panas secara konduksi, perpindahan panas konduksi, perpindahan panas secara radiasi, 3 cara perpindahan panas, rumus perpindahan kalor konduksi, konduktivitas termal, tabel konduktivitas termal.
Perpindahan Kalor
Pada sebuah benda, perpindahan kalor atau perambatan kalor terjadi dari benda yang bersuhu tinggi ke benda yang bersuhu rendah.
Kalor dapat merambat dengan tiga cara, di antaranya secara konduksi (hantaran), secara konveksi (aliran), dan secara radiasi (pancaran). Berikut pembahasan mengenai setiap jenis perambatan kalor tersebut.
1. Perpindahan Kalor Secara Konduksi
Jika salah satu ujung batang logam dimasukkan ke dalam api atau dipanaskan, ujung batang yang lainnya akan ikut menjadi panas, walaupun tidak ikut dimasukkan ke dalam api. Mengapa demikian?
Atom-atom di dalam zat padat yang dipanaskan tersebut akan bergetar dengan sangat kuat. Kemudian, atom-atom tersebut akan memindahkan sebagian energi yang dimilikinya ke atom-atom tetangga terdekat yang ditumbuknya.
Atom tetangga ini menumbuk atom tetangga lainnya dan seterusnya sehingga terjadi hantaran energi di dalam zat padat tersebut.
Untuk bahan logam, terdapat elektron-elektron yang dapat bergerak bebas yang juga ikut berperan dalam merambatkan energi tersebut. Perpindahan kalor yang tidak diikuti perpindahan massa ini disebut konduksi.
|
Rambatan kalor di dalam konduktor |
Kalor yang mengalir dalam batang per satuan waktu dapat dinyatakan dalam hubungan:
dengan: T1 = ujung batang logam bersuhu tinggi,
T2 = ujung batang logam bersuhu rendah,
A = luas penampang hantaran kalor dan batang logam,
L = panjang batang,
K = koefisien konduksi termal, dan
H = jumlah kalor yang merambat pada batang
per satuan waktu per satuan luas.
Dalam kehidupan sehari-hari, contoh peristiwa konduksi ini dapat Anda temukan saat Anda memasak makanan. Panci yang digunakan untuk memasak akan mendapatkan panas atau kalor di setiap bagiannya, walaupun bagian panci yang terkena api hanyalah di bagian bawahnya.
Perambatan kalor secara konduksi ini juga terjadi pada sendok yang digunakan. Oleh karena itu, tangkai sendok penggorengan dilapisi dengan bahan yang tidak menghantarkan kalor, seperti plastik atau kayu. Berikut tabel yang menyatakan nilai konduktivitas termal beberapa zat.
|
Tabel Konduktivitas Termal Beberapa Zat |
2. Perpindahan Kalor Secara Konveksi
Perambatan kalor yang disertai perpindahan massa atau perpindahan partikel- partikel zat perantaranya disebut perpindahan kalor secara aliran atau konveksi. Rambatan kalor konveksi terjadi pada fluida atau zat alir, seperti pada zat cair, gas, atau udara.
|
Rambatan kalor di dalam gas |
Apabila dua sisi yang berhadapan dari silinder pada gambar diatas suhunya berbeda, akan terjadi aliran kalor dari dinding yang bersuhu Ta ke dinding yang bersuhu Tb . Besarnya kalor yang merambat tiap satuan waktu, dapat dituliskan sebagai berikut.
dengan: H = jumlah kalor yang berpindah tiap satuan waktu,
A = luas penampang aliran,
ΔT = perbedaan temperatur antara kedua tempat fluida mengalir, dan
h = koefisien konveksi termal.
Besarnya koefisien konveksi termal dari suatu fluida bergantung padabentuk dan kedudukan geometrik permukaan-permukaan bidang aliran serta bergantung pula pada sifat fluida perantaranya.
3. Perpindahan Kalor Secara Radiasi
Matahari merupakan sumber energi utama bagi manusia di permukaan bumi ini. Energi yang dipancarkan Matahari sampai di Bumi berupa gelombang elektromagnetik. Cara perambatannya disebut sebagai radiasi, yang tidak memerlukan adanya medium zat perantara.
Semua benda setiap saat memancarkan energi radiasi dan jika telah mencapai kesetimbangan termal atau temperatur benda sama dengan temperatur lingkungan, benda tersebut tidak akan memancarkan radiasi lagi.
Dalam kesetimbangan ini, jumlah energi yang dipancarkan sama dengan jumlah energi yang diserap oleh benda tersebut.
Dari hasil percobaan yang dilakukan oleh Josef Stefan dan Ludwig Boltzmann, diperoleh besarnya energi per satuan luas per satuan waktu yang dipancarkan oleh benda yang bersuhu T, yakni:
Jadi demikianlah pembahasan kita untuk kesempatan kali ini, semoga materi yang terkandung didalam artikel ini dapat memberi manfaat untuk para sahabat pembaca semua. Salam Sukses!!!